Self seeks like: Many humans choose their dog-pets following rules used for assortative mating.

Christina Payne and Klaus Jaffe

Universidad Simón Bolívar, Caracas, Venezuela.

Correspondence: Klaus Jaffe: Universidad Simón Bolívar, Apartado 89000, Caracas 1080A, Venezuela. Fax: 58-212-9063624, e-mail: kjaffe@usb.ve

Key Words: pets, mate selection, assortative mating, sex, evolution

Running Head: Narcissism guides mate selection

Summary: Theoretical and experimental studies suggest that mating and pair formation is not likely to be random. Assortative mating characterized as “self seeking like”, seems to be widely practiced in nature. Experimental evidence for it is strong among humans seeking a mate. Assortative mating increases the probability of finding a genetically similar mate, without fomenting inbreeding, achieving assortative mating without hindering the working of other mate selection strategies which aim to maximize the search for “good genes”, optimizing the working of sex in evolutionary terms. “Self seeking like” seems to be a behavioural inborn trait among humans, and here we present evidence that the same behavioural mechanism seems to be at work when humans chose a pet. We show that in a significant proportion of human-pet pairs, sampled in pet beauty contests, the partners show much higher facial resemblances than can be expected by random pair formation.
Introduction:

What do we look for when choosing a pet? Are the psychological mechanisms guiding our pet choice based on more primitive mechanisms tailored by evolution for other, more basic functions? Dog pets and humans have many features in common [Benezech, 2003] and thus, dog-owners might chose their dog pets because they resemble themselves.

Computer simulations showed that random mating is very unlikely to occur in nature [Kalick & Hamilton 1986, Jaffe 1996, 1998]. Specifically, theoretical studies have suggested that assortative mating seems to be highly adaptive [Thiessen & Gregg 1980, Davis 1995], as it reduces excessive allelic variance induced by recombination and sex, especially among diploids with a large genome [Jaffe 1998, 1999, 2000]. These studies showed that assortative mating, defined as “self seeking like” has a strong stabilizing effect on sex, is evolutionary stable, and has an evolutionary dynamics analogous to kin selection [Jaffe 2000, 2002]. In addition, assortative mating affects the genetic structure of populations, influencing the evolutionary dynamics of sexual organisms significantly [Dieckmann & Doebeli 1999, Kondrashov & Kondrashov 1999, but see Ochoa & Jaffe 1999] and thus, is a feature that has very likely influenced our psychological tool box.

The rational of the importance for assortative mating is that living organisms seem to optimize rather than maximize outbreeding [Bateson 1983]. That is, mate choice mechanisms avoid maximizing outbreeding and inbreeding at the same time [Jaffe 2002]. A complementary theory to an incest-avoidance-outbreeding equilibrium is the optimization of the working of sex [Jaffe 1999, 2000]. This theory accepts that genetic similarity is not only achieved through familiar proximity, and recognizes that genetic relatedness may exist among individuals with no familiar relationship between them.

Imprinting, i.e. memorizing in early age the visual images of parents and then using these images for mate choice, as first discovered in birds [Lorenz 1935], also seems to guide assortative mating in humans [Todd & Miller 1993, Penton-Voak & Perret 2000, Bereczkei et al 2002, Little et al. 2003]. Other evidence, pointing to the existence of parts of the mechanism needed to allow humans “imprint” the faces of their parents, was provided by Le Grand et al. [2001]. They showed the need of “early” visual input to develop normal face recognitions later. Children resemble their parents [Nesse et al 1990, Bredart & French 1999, McLain et al 2000, Oda et al. 2002], sometimes even in odd ways: they seem first to resemble more their fathers [see also Daly & Wilson 1982, Regalski & Gaulin 1993]. Facial child-parent resemblance mechanisms seem to exist even among chimpanzee [Parr & de Waal 1999]. This visual memory may then be used to establish criteria for beauty, which in turn are used to select a mate, producing as a consequence assortative mating. These and other evolutionary effects of parental imprinting have been discussed by Todd & Miller [1993].
Here we test the hypothesis that algorithms evolved for assortative mating, are applied to other realms of human behavior, showing that humans chose pets that resemble themselves significantly more that what a random pet choice strategy would predict.

Methods:

During the National Canine Exposition in Caracas 2002, we took photographs of 48 dogs (purebreds) and photos of their 48 respective owners which agreed to participate in this study. Owners were a typical selection of Venezuelan races, a mixture of hybrids between African, Caucasian and American Indian races. The photos were processed with Photolpact 5.0 so as to remove any background to the dogs and subjects and any clothing’s of the owners. The final photo was produced with CorelDraw 7.0 so that each photo of the human owners was 7.2 cm x 5.5 cm, and that of their dog-pets 6cm x 7.2 cm. The 48 pairs photographed were then reduced to 36, filtering out those pairs were backgrounds or cloths could not be eliminated with editing without affecting the faces of dogs or human pet-owner. The photos were printed, code-numbered, and grouped into 6 groups of 6 pairs each (see Figure 1).

We chose 6 pairs per group as this number showed to be sufficient in detecting statistically significant choice patterns of human subjects guessing human couples, without tiring the test subjects. Group A and B had only male pet-owners, group C and D had only female pet owners, and groups E and F consisted had both, female and male pet owners. In each group, all dogs were of different races. Otherwise, pairs were assigned randomly to each group.
To assess a possible resemblance between the faces of the dogs and its human owners, the photographs of the 6 dog a given group of photos were placed on a table. The photos of the 6 corresponding human subjects were randomly shuffled and handed over to a test subject. The test subject had to assign each of the photographs of humans to a dog. Test subject were checked for their knowledge of any of the target subjects photographed. The test was performed double blind, as neither the experimenter nor the test subject knew who the correspondence of the photos to the real pair. Test subjects were recruited in Caracas in different environments, taking care that 50% were female, 50% male, and that 10 subjects of each sex fell into each of 4 age categories previously defined as: I: ages between 11 and 19 years; II: 20-29; III: 30-39; and IV: more than 40 years of age.

The statistical analyses performed on the data were applied to the number of correct pairs guessed by the test subjects. The analyses were: Pearson correlation coefficient to assess correlations between age and scoring and sex and scoring. Chi square test to compare the total number of scores obtained for a given experimental setting with those expected for random guessing. The tests involved that each test subject had to match all photos for all couples. Random guessing under this scenario for 6 pairs gives in average one correct guess per test subject. Another more sensitive way to look at the results was to assess the number of times a given pair was correctly identified as such by test subjects. This distribution of guesses (see Figure 2) was then compared with an expected distribution obtained by random guessing. The outcome of random pair formation plus random guessing was estimated using a simple Monte Carlo simulation model written in basic.
Results:

The number of correct guesses, i.e. guessed pairs of photographs corresponding to actual owner - dog pairs was far larger than expected by random guessing in most experiments (Table I). The exception was group C, composed of female owners, where test subjects were unable to guess dog-owner pairs above random. Guessing of pairs when both female and male owners were presented was significantly higher than when only male or female owners were present in the photographic samples (p<0.001, ANOVA with t-test). The more sophisticated statistical test, comparing the pattern of correct guesses achieved by our test subjects with that predicted for random guessing by a Monte Carlo simulations (Figure 2), confirm that test subjects are far better than random in guessing the ownership of dogs based exclusively on photos of dog and human faces. (Observed vs. Expected Frequencies: Chi-Square = 90.2 df = 5 p < .000001

No statistically significant differences could be found between the age and or sex of the test subject and the number of pairs guessed correctly (ANOVA: not significant, $F_{3,199} = 0.07$).

Discussion:

Our results show that human pet owners and their dogs resemble each other significantly more than expected for random pair formation, and that this resemblance can be detected by neutral judges (test subjects). During the review process of the present article Roy & Christenfeld [2004] published a similar study, examining whether the frequent casual reports of people resembling their pets are accurate by having observers attempt to match dogs with their owners. They found that observers were able to match only purebred dogs - not mixed raced ones - with their owners, and that there was no
relation between the ability to pair a person with his or her pet and the time they had cohabited. In our study, we used a much wider range of ages and races for both pet-owners and judges, and used only the face of the dogs as signals for judges. Thus, both studies complement each other, as between both they cover a larger range of ages, human races and cultures. The addition of both studies make the suggestion that humans apply an algorithm of “self seeks like” a much stronger one. No biologically relevant explanation as to the adaptive reasons for the use of this algorithm was provided by Ray & Christenfeld [2004].

Jaffe [2002] suggested that if assortative mating was indeed a winning evolutionary strategy, a testable prediction to possibly falsify the “self seeking like” hypothesis is that this narcissistic criterion should be applied to many other situations in human every day life involving aesthetic or affective assessments. Clearly, the choice of pets seems to follow this criterion. Thus, narcissism is very likely an important base for mate selection and other derivate behaviours for human choices.

Contributing to the discussion if human mate choice strategies are based on an algorithm of “self seeking like” or are rather the outcome of competition for the most attractive partner available, our results give support to the first alternative. The results presented here are completely compatible with the notion that humans develop a sense of beauty through imprinting like mechanisms. This sense of beauty must have a strong narcissistic component, as it is formed through the images of the parents, as was discussed in the introduction. When this sense of beauty is applied to mate selection, the outcome is assortative mating

The present study and the fact that these narcissistic criteria seem to be applied not only to mate selection, but also in situation were no pairs for reproductive purposes
are involved, such as in the choice of partners for business purposes [DeBruine 2002],

strongly support this narcissist hypothesis.

References:

Daly, M. & Wilson, M. 1982. Whom are newborn babies said to resemble? *Ethology and Sociobiology* 3: 69-78

Table 1: Statistical results, comparing the outcome of random guessing to that scored by test subjects guessing dog-owner pairs from photographs of dogs and faces of human owners.

<table>
<thead>
<tr>
<th>Group</th>
<th>Chi-Squared</th>
<th>p</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Males</td>
<td>31</td>
<td><0.03</td>
<td>18</td>
</tr>
<tr>
<td>B: Males</td>
<td>45</td>
<td><0.0005</td>
<td>18</td>
</tr>
<tr>
<td>C: Females</td>
<td>10</td>
<td>=0.93</td>
<td>18</td>
</tr>
<tr>
<td>D: Females</td>
<td>42</td>
<td><0.002</td>
<td>18</td>
</tr>
<tr>
<td>E: Both sexes</td>
<td>81</td>
<td><0.0001</td>
<td>18</td>
</tr>
<tr>
<td>F: Both sexes</td>
<td>79</td>
<td><0.0001</td>
<td>18</td>
</tr>
<tr>
<td>TOTAL</td>
<td>288</td>
<td><0.0001</td>
<td>113</td>
</tr>
</tbody>
</table>
Figure 1: Samples of photos of dogs and their owners used for this study.

Figure 2: Percentage of times (or number of times out of 100) test subjects scored 0, 1, 2, 3, 4, 5 or 6 pairs correctly. The dotted line indicates the outcome as calculated by a Monte Carlo simulation assuming random guessing.

Chi-Square = 118, df = 5, p < 0.0001